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Abstract—Recently, deep learning based video super-
resolution (SR) methods combine the convolutional neural
networks (CNN) with motion compensation to estimate a
high-resolution (HR) video from its low-resolution (LR) coun-
terpart. However, most previous methods conduct downscaling
motion estimation to handle large motions, which can lead to
detrimental effects on the accuracy of motion estimation due to
the reduction of spatial resolution. Besides, these methods usually
treat different types of intermediate features equally, which lack
flexibility to emphasize meaningful information for revealing
the high-frequency details. In this paper, to solve above issues,
we propose a deep dual attention network (DDAN), including a
motion compensation network (MCNet) and a SR reconstruc-
tion network (ReconNet), to fully exploit the spatio-temporal
informative features for accurate video SR. The MCNet pro-
gressively learns the optical flow representations to synthesize
the motion information across adjacent frames in a pyramid
fashion. To decrease the mis-registration errors caused by the
optical flow based motion compensation, we extract the detail
components of original LR neighboring frames as complementary
information for accurate feature extraction. In the ReconNet,
we implement dual attention mechanisms on a residual unit
and form a residual attention unit to focus on the intermediate
informative features for high-frequency details recovery. Exten-
sive experimental results on numerous datasets demonstrate the
proposed method can effectively achieve superior performance
in terms of quantitative and qualitative assessments compared
with state-of-the-art methods.

Index Terms— Video super-resolution, motion compensation,
detail components, attention mechanisms, high-frequency details.

I. INTRODUCTION

IDEO or multi-frame super-resolution (SR) is a classic
Vproblem in image processing, which aims at generating
high-resolution (HR) frames from a given low-resolution (LR)
video sequence. Video SR has been widely used in practical
applications such as video surveillance, human face hallucina-
tion and video conversion.
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In the problem of video SR, a corrupted low-quality LR
video is usually produced from the corresponding HR video
via variant motion blurs, down-sampling operation and addi-
tive noise. We can observe that super-resolving the LR videos
in real-world dynamics is an ill-posed problem since there are
multitude of solutions to constrain irreversible degradations for
any LR input. Various methods have been proposed to tackle
such video SR problem can be divided into two categories:
1) single-frame SR, which mainly comes from single image
SR [1]-[5]. This type of approach completely focuses on
intra-frame spatial correlations and learns the mapping func-
tion from LR frames to HR frames individually. And 2) multi-
frame SR [6]-[8] take the inter-frame temporal dependencies
between consecutive LR frames into consideration to produce
the HR frame.

Existing image SR algorithms can be roughly catego-
rized into interpolation-based approach and example-based
approach. The interpolation-based SR approach estimates the
pixels in HR grid from an observed LR image via fixed
weights, local covariance coefficients [12], and adaptive struc-
ture kernels [13], [14], which can simply achieve accept-
able SR results but produce blurry edges and unpleasant
artifacts. The example-based methods exploit the internal
similarities of a same image [15]-[17] or learn the rela-
tionship between LR and HR image patches from external
exemplar pairs [2], [18]-[21]. In recent years, with the signif-
icant improvement of deep learning in computer vision field,
many methods [22]-[26] typically utilize convolutional neural
networks (CNN) to directly learn the non-linear LR-to-HR
mapping function for image SR and have achieved impressive
performance on reconstruction accuracy and visual quality.

Multi-frame SR methods mainly focus on the inter-frame
relations between consecutive LR frames. Most previous
multi-frame SR methods [6], [27]-[29] model the temporal
dependencies by conducting the sub-pixel motion registration
based on sparse prior [27], [28] and total variation [6], [29].
Nevertheless, such iterative motion estimation can involve
expensive computational cost and limit the capacity perform-
ing on large and complex motions. Recently, many methods
combine the representation ability of deep learning with the
inter-frame consistency to enhance the visual quality of HR
frames. One option is to align adjacent frames as input to
obtain the super-resolved center frame without explicit motion
compensation [7], [8], which can reduce the computational
cost caused by temporal alignment. Some other methods
model the inter-frame correlations via bidirectional recurrent
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architectures [30], [31], which learn the temporal dependencies
without pre-/post-processing for multi-frame SR. However,
these methods can produce HR images with visual artifacts
on fast moving objects because of the non-explicit motion
registration.

Most video SR algorithms [32]-[36] depend on the accu-
rate motion estimation, which mainly consists of two steps,
i.e. a motion estimation and compensation process followed
by a SR reconstruction procedure. Some methods [32]-[34]
use optical flow algorithms for motion registration and employ
CNNs to model the non-linear mappings from compensated
“cubes” to HR patches. Other methods [35]-[37] estimate the
optical flow between consecutive frames with learned CNNs
and produce HR frames through another deep networks, which
can jointly conduct the motion compensation with SR task via
an end-to-end trainable framework. In [38], Liu et al. intro-
duce a temporal adaptive network to determine the optimal
temporal scale and adaptively combine all the HR estimations
based on motion information at pixel level.

However, all of these methods conduct the downscaling
motion estimation via strided convolution to effectively handle
large scale motions. Due to the reduction of spatial resolution,
such approach can cause coarse optical flow representations
and detrimental effects on motion estimation. Some meth-
ods [7], [35], [36] simply concatenate the compensated neigh-
boring frames with center frame for SR reconstruction, which
can suffer from the mis-registration errors caused by inaccurate
motion estimation. Moreover, the LR inputs and features in
deep CNNs contain different types information including low-
and high-frequency components. The low-frequency compo-
nents describe the main parts of images and the high-frequency
components are responsible for the edge and texture details.
Previous methods treat the information equally and lack flexi-
bility to emphasize meaningful information for high-frequency
details recovery.

In this work, we propose a novel deep dual attention
network (DDAN), cascading a motion compensation net-
work (MCNet) and a SR reconstruction network (ReconNet),
to jointly exploit the spatio-temporal dependencies for video
SR. The MCNet utilizes a pyramid motion compensation
framework to learn multi-scale optical flow representations
and further synthesize the motion information across adjacent
frames in a coarse-to-fine manner. Besides the downscaling
motion estimation as other methods, our MCNet employs an
additional module without any downsampling operation to
learn the full resolution optical flow representations for more
accurate motion compensation. Then, instead of directly feed-
ing the aligned frames and original center frame into ReconNet
for SR reconstruction, we extract the detail components of
original neighboring frames to mitigate the errors of motion
estimation.

In the ReconNet, we present the residual attention
group (RAG) that is composed of multiple residual attention
blocks (RAB) to enhance the feature representation ability
of our models for high-frequency details recovery. Specifi-
cally, we implement dual attention mechanisms, i.e. channel
attention and spatial attention, on a residual block and form
the RAB. The RAB can adaptively modulate intermediate
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features along channel and spatial dimensions to capture more
important information within each feature map. At the end of
ReconNet, an upscale module is employed to reconstruct the
center HR residual frame from LR inputs. We further conduct
the global residual learning between the HR residual image
and bicubic amplified center frame to generate the HR frame.

In summary, the main contributions of this paper are sum-
marized as follows:

1) We propose a novel deep dual attention net-

work (DDAN) for video SR, which is composed of
a motion compensation network (MCNet) and a SR
reconstruction network (ReconNet), to fully exploit the
spatio-temporal dependencies and learn more meaning-
ful information for accurate video SR.

2) The MCNet investigates multi-level optical flow repre-
sentations between adjacent frames in a pyramid fashion
and infers the spatial transform between them to model
the motion compensation.

3) We extract the detail components of original LR neigh-
boring frames as complementary information for more
accurate feature extraction, which can alleviate the
mis-registration errors of motion estimation.

4) In the ReconNet, we combine dual attention mecha-
nism along channel and spatial dimensions with resid-
ual learning to emphasize meaningful features for
high-frequency details recovery. The MCNet and Recon-
Net can be jointly end-to-end trainable for motion com-
pensation and video SR reconstruction.

The remainder of the paper is organized as follows.
In Section II, we describe the related work. The details of
our proposed video SR method are presented in Section III.
We discuss the differences between our proposed residual
attention mechanism and other attention based SR methods in
Section IV. Ablation study and experimental comparisons with
other state-of-the-art SR methods are provided in Section V.
We conclude our work in Section VI.

II. RELATED WORK

In this section, we first give a brief review of deep learning
based image SR methods. Then we introduce the development
of video SR. Finally, we discuss the attention mechanisms
applied in deep neural networks.

A. Deep Learning Based Image Super-Resolution

Single image SR is a long-standing problem in computer
vision, which refers to the transformation of an image from LR
to HR. Since Dong et al. [5] utilize three-layer convolutional
neural network for image SR (SRCNN), in recent years, deep
learning methods have been widely used to tackle the ill-posed
SR problem. Kim et al. [22] solve the image SR problem
using a very deep convolutional network and residual learning
(VDSR). In [24], Shi et al. introduce an efficient sub-pixel
convolutional network (ESPCN) for image SR, which employs
a sub-pixel convolutional layer to super-resolve the LR data
into HR space at the end of the network. Lai et al. [25]
present a deep laplacian pyramid SR Network (LapSRN) to
progressively reconstruct the sub-band residues of HR images.
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Tai et al. [26] propose a deep recursive residual net-
work (DRRN) for image SR, which combines the recursive
and residual learning strategy in global and local manners to
mitigate the difficulty of training very deep network. In [39],
Zhang et al. propose a residual dense network (RDN) to make
full use of hierarchical features from the original LR image,
which achieves the best state-of-the-art SR performance.

B. Video Super-Resolution

Video or multi-frame SR assumes that different observations
of the same scene are available. Therefore, the shared explicit
spatio-temporal redundancy can be used to constrain the SR
problem and invert the downscaling process. In [6], Liu et al.
propose a bayesian approach to simultaneously estimate the
underlying motion, blur kernel, and noise level while recon-
structing the HR frames. Ma et al. [27] tackle ubiquitous
motion blurs by optimally searching the least blurred pixels
for multi-frame SR. Motivated by the impressive performance
of deep learning in image SR, most recent video SR methods
adopt deep CNNss to directly learn the mappings from consec-
utive LR frames to HR frames. Kappeler et al. [7] apply an
adaptive motion compensation scheme to handle fast moving
objects and motion blurs in videos. Liao et al. [32] consider
various motion information to generate an ensemble of SR
drafts and then reconstruct HR frames by a draft-ensemble
network. In [35], Caballero et al. present a real-time approach
for video SR based on a sub-pixel layer and spatio-temporal
network (VESPCN) to generate the HR frame from input
LR consecutive frames. Based on the motion compensa-
tion transformer module in [35], Tao et al. [36] propose a
sub-pixel motion compensation (SPMC) layer to align the
reference frame to neighboring one onto HR grid. Then,
an encoder-decoder network with a ConvLSTM [40] module
is adopted to reconstruct the center HR image. Inspired by the
motion compensation transformer module (MCT) in [35], [36],
Wang et al. [41] propose a multi-memory convolutional neural
network (MMCNN) for video SR, which utilizes serial densely
connected residual blocks composed of multiple ConvLSTM
layers to model the spatio-temporal correlations for video SR.

C. Attention Based Deep Models

Recently, attention mechanism has been proved to play an
important role in capturing long-range dependencies in neural
networks, which enables models to differentiate irrelevant
information and focuses on more informative components of
an input. The benefits of such a mechanism have been shown
across a range of tasks, such as machine translation [42] and
image classification [43]-[45]. Vaswani et al. [42] propose a
deep model which entirely relies on an attention mechanism
to draw global dependencies between input and output for
machine translation. In [44], Hu et al. focus on the channel
relationship and propose the squeeze and excitation network
(SENet), which can adaptively recalibrate the channel-wise
feature responses by explicitly modeling interdependencies
between channels. Sanghyun et al. [45] introduce a convolu-
tional block attention module (CBAM) which applies chan-
nel and spatial attention to emphasize meaningful features.
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There are also some methods [46]-[48] utilize channel atten-
tion or spatial attention to estimate HR images and show
impressive SR performance.

III. PROPOSED METHOD

In this section, we present the design methodology for our
proposed DDAN. We first introduce the whole architecture of
our network, and then the details of each individual module
are provided.

A. Overview

The degradation procedure of a HR video sequence to the
corrupted low-quality sequence at time ¢ can be represented
as Il = (B, ® 1) | +¢. Here, I denotes the clean HR
frame at time 7 and 7 is the corresponding center LR frame
via multiple quality degradations. B; represents the complex
motion variations such as motion blur and defocus blur. | is
the downsampling operation with scale factor s and ¢; is the
additive noise. The pixel-level motion registration between
the i'" neighboring frame I’ and center frame /X can be
formulated as I} = BC,-,;(IiH) ls +€iy. Here, C;;(-) is the
warping operation for aligning IiH to IIH . B denotes the blur
matrix. €;; contains the additive noise and mis-registration
errors.

Given a corrupted video sequences {IiL};“_L%, the goal of
our proposed DDAN is to generate the center HR frame
ftH € RSHXSWXC from the center LR frame IF e RF*WxC
and 2N neighboring frames [ItI;N, e, Itlil s Itljrl s Itler]
with scale factor s. As shown in Fig. 1, the proposed net-
work is composed of two parts: a motion compensation net-
work (MCNet) and a SR reconstruction network (ReconNet).
The MCNet network takes the center frame I and neigh-
boring frame Il.L as input to produce the motion compensated

neighboring frame fiL
it = FucUf 1) ()

where Fjc(-) denotes the mapping function from I,L to Il.L
of MCNet. Then, to further alleviate the mis-registration influ-
ence of motion estimation, we extract the detail components
d; by calculating the residues between the aligned frame fiL
and its corresponding input IiL

di =1 — It @)

Feeding 2N neighboring frames into the MCNet, we can

obtain 2N aligned LR frames [ftﬁN, e, itL_l, IAILH, R IAtLJrN]
and the detail components [d;—n, ..., di—1,di+1, ..., dr+N].

In the ReconNet, we concatenate the aligned frames, resulted
detail components and LR center frame in channel dimension
and take them as input of ReconNet for feature extraction and
SR reconstruction

I = Fsp(l, IF, d) 3)

where Fsg(-) denotes the mapping function of ReconNet to
reconstruct the HR center frame.
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Fig. 1.

The network architecture of our proposed deep dual attention network (DDAN) for spatio-temporal video SR, which contains a motion compensation

network (MCNet) to synthesize the motion information across the neighboring frames at different scales and a SR reconstruction network (ReconNet) to

generate HR frames.
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Fig. 2. The network architecture of our proposed motion compensation
network (MCNet), which adopts a pyramid architecture to learn multi-level
optical flow representations and synthesize the motion information across
neighboring frames at different scales.

B. Motion Compensation Network

Previous methods [35]-[37], [41] learn the downscal-
ing flow representations to model the motion compensa-
tion. Although such approaches can effectively handle large
motions, with the first down-scaling operations, the reduc-
tion of spatial resolution can cause detrimental effects on
the accuracy of motion estimation. In order to obtain more
accurate aligned frames, in the proposed MCNet, besides
learning the downscaling flow representations, we develop
an additional motion estimation module to learn the full
resolution optical flow representations. As sketched in Fig. 2,
we adopt a pyramid multi-level structure to conduct the motion
compensation between adjacent frames. To simply depict the
details of our MCNet, we introduce the motion compensation
strategy between two frames. Given original LR input frames
I and I, a x4 coarse optical flow A* . is obtained by early
concatenating the two frames and then downscaling with two
x?2 strided convolutional layers. The estimated optical flow is
upscaled to original resolution by a sub-pixel convolutional
layer. A schematic design of the motion estimation modules

TABLE I

THE ARCHITECTURE OF THE MULTI-LEVEL MOTION ESTIMATION
MODULES IN THE PROPOSED MCNET. CONVOLUTIONAL LAYERS
ARE DESCRIBED BY KERNEL KIZE (k), STRIDE (s),

AND NUMBER OF CHANNELS (n)

Layers x4 flow X2 flow Full resolution flow
1 k5s2n24 / ReLU | k5s2n24 / ReLU k3sIn32 / ReLU
2 k3s1n24 / ReLU | k3sln24 / ReLU k3s1n32 / ReLU
3 k5s2n24 / ReLU | k3sln24 / ReLU k3s1n32 / ReLU
4 k3s1n24 / ReLU | k3sln24 / ReLU k3s1n32 / ReLU
5 k3s1n32 / tanh k3s1n8 / tanh k3sIn2 / tanh
6 Upscale x4 Upscale x2 _

are detailed described in Table I. The resulted coarse Aﬂow
A IX_4) ; is applied to warp the target frame and produce Ii,LX 4

Motivated by [35] and [49], we adopt the bilinear interpolation
for more efficient warping process

Ik, =zl A% (4)

where Z(-) represents the warping operation. The warped

L ; : x4
frame I; , is then processed with the coarse flow A7,

and the LR center frame /" through a x2 motion estimation
module. As shown in Table I, this uses only one x2 strided
convolutional layers and a x2 upscale layer to obtain a x2

optical flow A;ﬁi. We then obtain the finer aligned frame

IAi’sz by warping the center frame with the combined optical

2
flow A%,
2 2 4
A/z:i = Atx—n' + Atx—n'
A 2
Ii,L><2 = I(IrL, A/t:i (5)

We further utilize an additional motion estimation (the top
branch in Fig. 2) which contains several convolutional layers
without any down-scaling process to learn the full resolution
optical flow representations. As shown in Fig. 2, the output
optical flow A’ ,X_ZH and corresponding compensated frame
fz{‘xz are fused with the original LR center frame I/ as the
input of our full resolution motion estimation module. Then,
the full resolution flow A;_,; can be generated. Therefore,

we can obtain the final compensated neighboring frame iiL
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Fig. 3. The network architecture of our proposed SR reconstruction network (ReconNet), which mainly contains a feature extraction module, multiple stacked
densely ConvLSTM blocks as build module, a residual attention module (RAM) composed of multiple residual attention groups (RAG), and a upsample module

to upscale the LR inputs to desired spatial resolution.

with the total flow A’;_,;

2
Ay = NS+ A
IF =1k Nis) (6)

C. Detail Components Extraction

Previous sophisticated optical flow based methods [35],
[36], [41] simply concatenate the compensated neighboring
frames and center frame for feature extraction and reconstruc-
tion. However, any errors in the optical flow estimation or
wrapping operation can adversely affect the subsequent SR
reconstruction and introduce artifacts. To solve this issue,
as shown in Fig. 1, we extract the detail components of
neighboring frames by conducting the subtraction operation
between the aligned frames and their original LR inputs. After
that, the extracted detail components are concatenated with the
warped frames and center LR input in channel dimension. For
simply depiction, we formulate such fusion step as

1= (15, 1F, di] (7)
where If denotes the concatenated input of the three
components.

D. SR Reconstruction Network

The detailed structure of the SR reconstruction net-
work (ReconNet) is shown in Fig. 3. The proposed ReconNet
contains four parts: a feature extraction module, multiple
stacked densely ConvLSTM blocks (DCB) as build module,
a residual attention module (RAM) and an upscale module.

1) Feature Extraction: As illustrated in Fig. 3, the feature
extraction module contains a 3 x 3 convolutional layer and
serial residual blocks composed of two convolutional layers
with learnable kernel of size 3 x 3 to extract deep features
from the fused input If fed into ReconNet

Ho = ho(Ih) (®)

where ho(-) denotes the mapping function of the feature
extraction module. Hy represents the extracted features and
is used as input to later state.

2) Densely ConvLSTM Blocks: Recent video SR meth-
ods [36], [41] employ ConvLSTM [40] to exploit the
inter-frame correlations of input video sequences and have
generated promising SR results. Specifically, supposing there
are inputs A7, ..., &;, cell outputs Cy, ..., C;, hidden states
S1,...,S;, and the input gate i,, output gate o;, forget gate
f: of the ConvLSTM, the key equations of ConvLSTM are
shown as below

i =0(Wyi %X+ Wy xS—1 + Wei0Ci—y)
fi=oWyp 5 X + Wp % S1 + Wep 0 Cio1)

Cr = froCi—1 +iotanh(Wye % Xy + Wy x Si—1)

0r =0 (Wyox Xy + Wy xS 1 + Wep 0Cy)

S; = o0; otanh(Cy) )

where o (-) and ranh(-) denote the sigmoid and hyperbolic
tangent function. “* ” denotes the convolution operator and
“0” denotes the Hadamard product. We can see that a Con-
VLSTM can capture motions when we view the states as
the hidden representations of moving objects. We have tested
two ConvLSTM methods DRVSR [36] and MMCNN [41]
for video SR. We find that multiple “Conv-ConvLSTM” with
densely connections can effectively model the temporal depen-
dencies and shows better performance on validation datasets
during the training process. Therefore, in our method, as illus-
trated in Fig. 3, we employ multiple densely ConvLSTM
Blocks and insert them in the middle stage of ReconNet to
make full use of spatio-temporal information. This process
can be represented as

Hy = hp(ho) (10)

where /i p(-) denotes the mapping function of the whole DCBs
module and H; denotes the learned features.

3) Residual Attention Module: The LR inputs and features
in deep CNN contain different types information such as low-
and high-frequency information. The low-frequency compo-
nents describe the main parts of images and the high-frequency
components are responsible for the edge and texture details.
Thus, to make our proposed network emphasize more mean-
ingful information, as shown in Fig. 3, in our proposed residual
attention module (RAM), we utilize multiple residual atten-
tion groups (RAG) to exploit the interdependencies among
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Fig. 4. The structure of the residual attention block in the proposed RAG.
Top: the full components in the RAB. Bottom: the detailed design of the
attention module (AM) in the RAB, which contains one channel attention (CA)
unit (top branch) and one spatial attention (SA) unit (bottom branch).

inter-channel and spatial dimensions. The RAG consists of
serial residual attention blocks (RAB) followed by a 3 x 3
convolutional layer. The RAB combines the classical residual
unit [50] with spatial and channel attention mechanisms.
Supposing there are n RAGs in ReconNet and each RAG
contains m RABs. Therefore, the output G, of the n' h RAG
can be represented as

Gy = Gp1 + hy,, (R}, (.(R3(RY(Gr-1)))-..))

= Gy1 + H), (1
where G,_; is the output of the (n — 1)’ RAG and the
input of the n'” RAG. [RZ, 1., R,_»R},] denote the
mapping functions of m RABs in the n'" RAG. h” (-) denotes
the convolution operation of the final convolutional layer and
H]' is the output via the convolution operation.

4) Residual Attention Block: Now, we elaborate the details
of the residual attention block (RAB) in our proposed RAG.
As shown in Fig. 4(a), each RAB contains two 3 x 3 convolu-
tional layers and one attention module (AM). For the j? h RAB,
the output U; of the first two convolutional layers can be
represented as

Uj = f7(f} (Rj-1) (12)
where R;_ is served as the output of the (j — 1)"" RAB
and the input of the j” RAB. fj1 (-) and sz(-) are the map-
ping functions of the two convolutional layers, respectively.
We denote the U; = [u},u?,...,uffl,uf] consisting of
C feature maps with the size H x W x C as the input of
our AM. The structure of the AM in RABs is illustrated
in Fig. 4(b). We embed the spatial attention (SA) unit and
channel attention (CA) unit to exploit the interdependen-
cies of features between the channels and spatial locations.
As shown in Fig. 4(b) (the top branch), for the CA unit,
we first conduct global average pooling operation on U; to
obtain the channel-wise statistic z € R'*!*C through spatial
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dimensions H x W

| AW
ze = fepr(Uj) = THxW ZZM?(PJ])

p=lg=1

(13)

where u;(p, q) is the value at position (p, ¢) of the ¢ chan-
nel uj Jcp(+) denotes the global pooling operation. To fully
capture the interdependencies across channels from the aggre-
gated information by global average pooling, we employ two
1 x 1 convolutional layers with the reduction ratio r to extract
the summary statistic z

MY = WE s (W xz) (14)

where MjcA denotes the resulted channel attention map of the

j" RAB. Wé € RFXCxIx1 gpq Wg e REOXF*Ix1 gre the
weight sets of the two 1 x 1 convolutional layers in CA unit,
respectively. 7(-) is the PReLU [51] activation function and
“x” denotes the convolution operation.

Different from CA, the SA focuses on more important
regions and model the contextual information over local repre-
sentations. Given the same input U; = [u}, u?, R uc_l, u]C]
for the SA unit, as shown in Fig. 4(b) (the bottom branch),
we first adopt a 1 x 1 convolutional layer to integrate the
features of previous state. Then, one depth-wise convolutional
layer is employed to obtain different spatial attention maps for
each channel

M4 = W2 s 7 (Wi % z) (15)

where M34 € RE*W*C denotes the generated spatial atten-
tion maps. WS1 € RAXWXC and WS2 € RAXWxC represent the
weight sets of the first convolutional layer and the following
depth-wise convolutional layer in SA unit, respectively.

To take advantage of the both attention mechanisms simul-
taneously, we conduct the element-wise addition operation
on the attention maps produced via CA unit and SA unit.
After that, we utilize a sigmoid function to normalize such
attention maps range to [0, 1] for generating a full attention
mask y € REXWxC

y =o(M§A+ M3Y) (16)

where o (-) denotes the sigmoid function. Thus, the output R;
of the j* RAB can be formulated as

R; =R;(R; 1)
Rj=Rj-1+7®Uj )

With the integration of CA and SA in residual blocks,
the features are adaptively modulated in a global and local way
to enhance the representational ability of our proposed network
for high-frequency details recovery. Furthermore, to explore
the features at different states, we take all output feature maps
of the RAGs as input fed into a 1 x 1 convolutional layer
respectively and generate a fusion representation. This process
can be expressed as

n
H, = Z Wi * G
k=1
where W denotes the weight set of the 1 x 1 convolutional
layer for the k' RAG and Hy is the fused representation.

(18)
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5) Upscale Module: After extracting deep features in LR
space, as illustrated in Fig. 3, a 3 x 3 convolutional layer with
s2C channels followed by a sub-pixel convolutional layer [35]
is adopted to convert multiple LR subimages of size H X
W x s2C to HR subimages of size sW x sH x C. Then a
single channel convolutional layer with kernel size of 3 x 3 to
reconstruct the HR residual image

H, = hy(PS(h(Hy))) (19)

where 1, (-) denotes the convolution operation to extract sC
feature maps for the upscaling process. PS is an periodic
shuffling operator that rearranges the elements of a H x W x
s%C tensor to a tensor of shape sW x sH x C. h,(-) denotes
the mapping function of the reconstruction layer. H, is the
HR residual frame produced by ReconNet. Finally, as sketched
in Fig. 1, global residual learning is conducted on the residue
between the estimated HR residual frame H, and bicubic
amplified center frame to produce the final SR result. The
output ftH of our proposed DDAN can be expressed as

" =H, +BU" (20)

where B(-) is the bicubic upsampling operation.

E. Training Strategy

Our proposed DDAN combines the MCNet and ReconNet
to provide an accurate, fast, jointly end-to-end trainable motion
compensated video SR method. Since we do not have the
ground truth of optical flow, to train the MCNet for motion
compensation, we adopt the unsupervised warping loss as [36]
to optimize its parameter set ®; and minimize the MAE
between the compensated frame fiL and original neighboring
frame [F according the flow A’;_,;

N

Linc(©1) = > |IIF = IFI + allVieillh
i=—N

21

where L,.(-) denotes the loss function of MCNet.
V;_.; denotes the total variation on each component of the
learned optical flow A’,_; in MCNet. « is the regularization
weight. We set o = 0.01 in all experiments. The Charbonnier
loss [25] is applied on the output of ReconNet and backprop-
agated through both ReconNet and MCNet

N
L (©2) = z V (ItH - izH)z + &2

i=—N

(22)

where L, () and @7 represent the loss function and learned
parameters of ReconNet, respectively. f,H is the final recon-
structed HR frame of DDAN. IIH is the corresponding HR
ground truth of 7. We empirically set & to 1073, Conse-

quently, the overall loss function £(-) to train DDAN is
L= »Csr + ,B»Cmc (23)

where f is the non-negative trade-off weight. We set f = 0.01
in all experiments.
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IV. DISCUSSION

In this section, we discuss the differences between our pro-
posed residual attention mechanism and other attention based
SR methods which contains the convolutional block attention
module (CBAM) [45], residual attention module (RAMSR, for
a better distinction with our proposed RAM) in [47], and the
channel-wise and spatial attention residual (CSAR) block [48].

A. Difference to CBAM

Given an intermediate feature map, CBAM [45] sequentially
infers the channel attention and spatial attention for adaptive
feature refinement. Compared to our proposed RAB, CBAM
adopts both average and max pooling operations to obtain
two type of channel statistics for finer attention while our
proposed RAB only adopts average pooling to calculate the
channel-wise statistics. Besides, the CBAM further introduces
a spatial attention module to aggregate the spatial information,
which also employs the average and max pooling followed
by a large kernel size (7 x 7) of convolutional layer to
obtain a single spatial attention map. Our RAB employs a
1 x 1 convolutional layer to integrate the features of previous
state and one 3 x 3 depth-wise convolutional layer to obtain
different spatial attention maps for each channel, which is
more effective than CBAM for video SR. The comparisons
will be shown in Table V and Fig. 9.

B. Difference to RAMSR and CSAR

We now elaborate the differences between our proposed
RAM and RAMSR [47]. Different from our proposed RAM
utilizing global average pooling to capture the channel-wise
statistics, RAMSR computes the variances from each channel
to extract channel-specific statistics. Compared to CSAR [48],
we all utilize the average pooling operation on individual fea-
ture channel along spatial dimensions. However, in the spatial
attention unit, CASR calculates a single spatial attention map
to emphasize different local regions whereas our SA unit in
RAB obtains different spatial attention maps for each channel,
which can adaptively modulate the contextual information in a
more effective way. The comparisons with RAMSR and CSAR
will be shown in Table V and Fig. 9.

V. EXPERIMENTS

In this section, we first introduce the datasets to train
and test our models. Then, the implementation details of our
proposed framework is provided. Next, we analyze different
modules in our proposed network. Finally, our results are
compared with several state-of-the-art methods in terms of
quantitative evaluations, visual quality, and inference time.

A. Datasets

In this work, since there is no publicly available video
dataset that is large enough to train our deep networks, we use
the datasets provided in [41] as our training datasets, which
contains 542 video sequences collected from high-quality
videos with the contents including urban, wildlife, and
landscape et al.. Each video sequence contains 32 consecutive
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frames, where most frames at the resolution of 1280 x 720.
We randomly select 522 video sequences as training data
and the rest 20 for validation (termed as Val/20). For testing,
to demonstrate the effectiveness and generalization of our
DDAN, we first conduct experiments on public single image
testing datasets including Set5 [52], Set14 [53], BSDS100 [54],
Urbanl00 [17] and Mangal09 [55] and compare our DDAN
with recent image SR methods like A+ [3], SRCNN [5],
VDSR [22], DRCN [23] and LapSRN [25]. We further com-
pare our method with recent state-of-the-art video SR methods
on three public video datasets: Myanmar [7], Vid4 [35], and
YUV2] [33]. Original Myanmar video contains 59 scenes
with 4K resolution (3840 x 2160), where 6 scenes composed
of 4 frames are utilized for testing. The original frames are
downscaled to 960 x 540 pixels as HR frames using bicubic
interpolation. The Vid4 dataset contains four videos: calendar,
city, foliage, and walk, which are of 720 x 576, 704 x 576,
720 x 480, and 720 x 480 resolutions respectively. The YUV21
dataset includes 21 CIF format clips with different types
of motions captured in different scenes and all the videos
are of 352 x 288 resolution. PSNR and SSIM are used
as evaluation metrics to compare with different image and
video SR networks quantitatively. In order to avoid the border
effects, PSNR and SSIM are calculated by eliminating 8 pixels
on each border as in [41].

B. Implementation Details

The detailed architecture of MCNet is illustrated in Table I
and Fig. 2. With respect to the ReconNet, there are 4 residual
blocks in the feature extraction module. We adopt 10 DCBs
and each DCB contains four convolutional layers with the
kernel size of 3 x 3 from 16 to 64 filters, including those
inside ConvLSTM. In each RAG, all convolutional layers have
64 filters and the kernel size of them are 3 x 3 except the
1 x 1 convolutional layers in the AM. The reduction ratio
r in CA unit is set to 16. The kernel size of depth-wise
convolutional layer in SA unit is set to 3 x 3. In the upscale
module, we adopt one 3 x 3 convolutional layer with 64s>
filters to integrate previous LR features for scale factor s
(s = 2,3,4). The reconstruction layer at the end of our
DDAN contains one filter with kernel size of 3 x 3 and
stride 1.

We convert all the video frames into YCbCr color space, and
send only the luminance channel to our network. All original
LR input frames are downsampled with specific scale factors
using the bicubic interpolation. The input LR frames fed into
the proposed network are with the patches of 32 x 32 pixels
from N consecutive frames with non-overlapping regions and
the mini-batch size is set to 10. We initialize the network with
Xavier method [56] and train our models using Adam [57]
optimizer. The initial learning rate is set to 5S¢ — 4 for all
layers and decreases to le — 5 after 10° iterations using the
Polynomial decay. We first train the MCNet for 107 iterations
using L., then we train the ReconNet for another 10°
iterations using L. At last, these two networks are trained
together with £ for 10° iterations. We use Tensorflow to
implement our models on a Titan Xp GPU.
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Fig. 5. The convergence process of the two motion compensation algorithms,
MCT and MCNet, in the proposed DDAN. The curves for each combination
are based on the PSNR for 4x SR on the Val20 dataset.

(a) Ground truth (c) MCNet (ours)

Fig. 6. The visual comparisons of video SR results by the networks with
the combinations of MCT [41] and our MCNet. The assessments are made
for 4x upscaling on the 12" frame from “foliage” (top) and the 10" frame
from “walk” (bottom) video clips in Vid4 dataset.

C. Investigation of the Motion Compensation Network

We compare the proposed MCNet with the motion com-
pensation transformer module (MCT) in [35], [41]. MCT
learns the x4 and x2 optical flow for motion estimation. Our
proposed MCNet can be regarded as an extensive vision of
MCT, which employs an additional full resolution motion esti-
mation module to make more accurate motion compensation.
We fixed the number of RAGs in ReconNet as 4 and each
RAG contains 4 RABs. Then, we combine the two motion
compensation strategies with our ReconNet respectively to
investigate the effectiveness of different motion compensation
algorithms for video SR. The convergence process of the two
combinations is visualized in Fig. 5. We can observe that
the proposed MCNet can stabilize the training process and
achieve higher PSNR performance (about 0.15dB) than MCT
with the same training time cost. Besides, to demonstrate that
the superiority of our proposed MCNet for more accurate HR
frame reconstruction, we illustrate the HR frames generated
by the two combinations. As shown in Fig. 6, we can see that
the proposed MCNet produces clearer image details while the
model using MCT generate SR results with more blurs. Thus,
we adopt MCNet as our motion compensation strategy and
combine it with the ReconNet (4 RAGs and 4 RABs), termed
as DDAN-M4N4.
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(a) Ground truth (b) RB+DC (¢) SAB+DC

Fig. 7.
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(f) RAB w/o DC

(d) CAB+DC (e) RAB+DC

The visual comparisons of video SR results by the networks with various combinations of the components in Table II. The assessments are made

for 4x upscaling on the 6'" frame from “foreman” (top) and “news” (bottom) video clips in YUV21, where “DC” denotes detail components.

TABLE II

STUDY OF CA AND SA FOR VIDEO SR WITH SCALE FACTOR 4 ON Val20.
THE TEXT INDICATE THE BEST PERFORMANCE

TABLE III

ABLATION STUDY OF DETAIL COMPONENTS FOR DIFFERENT VIDEO
SR MODELS. WE OBSERVE THE BEST PERFORMANCE
ON Val20 FOR 4x SR

Components Different combinations of CA and_SA
RB [CAB [SAB [RAB | Baseline ModelsVESPCN / VESPCN-CMMCNN / MMCNN-CDDAN / DDAN-C
CA X v X _ _ PSNR 29.32 7/ 29.50 30.76 / 30.89 30.91 7/ 31.10
In residual blocks SA X X v _ _ SSIM 0.7061 / 0.7128 0.7440 / 0.7487 0.7489 / 0.7519
CA and SA X _ _ v _
PSNR 30.96 (31.03 [31.02 31.10 30.52

D. Study of Channel Attention, Spatial Attention

To validate the effectiveness of the proposed RAB for video
SR, besides the RAB, we construct another three residual
blocks with different attention mechanisms for comparison.

(i) CA based residual block (CAB): we remove the SA unit

from RAB. Therefore, the CAB contains the two 3 x 3
convolutional layers and one CA unit.

(ii) SA based residual block (SAB): we remove the CA unit
from RAB and build the SAB.
Basic residual block (RB): we remove the two attention
mechanisms (i.e. CA and SA) from RAB and only retain
the two 3 x 3 convolutional layers.
We adopt the network without any RAB or RB as a baseline
model. Table II shows the ablation study on the effects of
the channel attention (CA) and spatial attention (SA) for
4x SR video SR on Val20. The first 4 networks adopt the
same structure as DDAN-M4N4. Obviously, we can see that
the baseline model achieves the worst performance. This is
because that the baseline model only adopts the same feature
extraction module, DCBs and upscaling module for video SR,
which has much fewer layers and parameters than another
four models. From the comparisons of the first 4 networks,
we can see that when both CA unit and SA unit are removed
in the RAB, the PSNR values are relatively low. Besides,
by integrating the CA unit or the SA unit into the residual
blocks, the SR performances can be moderately improved.
Finally, when our proposed RAB with the combinational two
attentions CA and SA are utilized, the performance can be
further boosted.

To demonstrate that the proposed RAB can help to produce
more accurate high-frequency details, we show the visual

(iii)

comparisons of 4x SR results produced by the first 4 SR
models in Table II on the foreman and news video sequences
from YUV2I. In Fig. 7, it is seen that the network with
proposed model with RAB (Fig. 7(e)) can produce clearer
image contents than the non-attention SR model (Fig. 7(b)).

E. Effectiveness of Detail Components

We now analyze the effects of the detail components
extracted from neighboring frames for HR center frame recov-
ery. The visual comparisons for 4 x SR are visualized in Fig. 7.
As illustrated in Fig. 7(f), compared with Fig. 7(e), we can
observe that the model which fuses neighboring detail com-
ponents can produce the SR results with more accurate texture
details while the SR model without detail components extrac-
tion caused more blurs and artifacts. Then we conduct the
experiments on two existing video SR methods VESPCN [35]
and MMCNN [41]. Specifically, after the motion compen-
sation via MCT, we extract the detail components as our
DDAN. We retrain the pubic models VESPCN and MMCNN
for fair comparison. The models trained with detail compo-
nents are denoted as VESPCN-C and MMCNN-C. We adopt
the DDAN-M4N4 structure (simply denoted as DDAN and
DDAN-C) to compare with other models. Table III shows
the quantitative comparisons on Val20 for 4x SR. It is seen
that the models trained with details components can obtain
better PSNR and SSIM scores than their original models.
Both the quantitative and qualitative results demonstrate that
the detail components can dramatically improve the video SR
performance.

F. Effectiveness of Residual Attention Module

In this subsection, we first investigate the basic network
parameters: the number of RAG (denote as n for short),
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Fig. 8. The training process of our proposed DDAN with different number
of n and m in the ReconNet. The curves for each model are based on the
PSNR on Val20 with scale factor 4 in 1200K iterations.

TABLE IV

ABLATION STUDY OF DCBS AND RAM. WE OBSERVE THE BEST
PERFORMANCE ON Val20 WITH SCALE FACTOR 4. THE TEXT
INDICATE THE BEST PERFORMANCE

Models Depth [Parameters (M) [PSNR (dB)
MMCNN | 10 DCBs (100 layers) 10.582 30.87
DDAN-S 7 DCBs (141 layers) 7.051 31.11

DDAN 10 DCBs (158 layers) 10.290 31.17

and the number of RAB per RAG (denote as m for short).
As shown in Fig. 8, there are three networks with different
number of m and n, termed as DDAN-M4N4, DDAN-M6N4,
DDAN-M6NG6, respectively. Each network contains 4 resid-
ual blocks in the feature extraction module and 10 DCBs.
We use the best model MMCNN in [41] as a reference,
which has the same number of DCBs and another two deep
densely residual blocks (two B5D5) as feature extraction and
reconstruction respectively. We can see that larger m or n
would lead to better PSNR performance. This is because the
proposed network becomes deeper with larger m, n, and more
hierarchical features fusion. Besides, all of our three models
achieve superior PSNR performance compared with MMCNN.
Therefore, we employ the DDAN-M6NG6 as our best trained
model DDAN.

In our experiment, we found that the ConvLSTM layer
requires much larger memory costs than the convolutional
layer. With large number of DCBs, the networks can face
the challenge of memory footprint and the limitation of
deeper architecture. To investigate the best trade-off between
the DCBs and RAM. We reduce the number of DCBs and
employ the same number of RAGs as DDAN to obtain another
model, termed as DDAN-S. In the DDAN-S, we set the
number of DCBs as 7, where the MMCNN has 10 DCBs.
We compare three models DDAN-S, DDAN, and MMCNN in
terms of parameters, depth and PSNR performance. As shown
in Table IV. it is seen that the proposed networks combine
the DCBs and RAM can achieve marked increase in term
of PSNR. In particular, the model DDAN-S outperforms the
MMCNN about 0.24dB with deeper layers but much fewer
parameters. With the same DCBs and larger number of RAMs,
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TABLE V

ABLATION STUDY OF DIFFERENT ATTENTION MECHANISMS.
WE OBSERVE THE BEST PERFORMANCE ON Myanmar
DATASETS FOR 4x SR

Models | CBAM | RAMSR | CSAR | RAM (ours)
PSNR 34.29 34.38 31.35 34.40
SSIM 0.9105 0.9134 0.9132 0.9134

i YRl T

§ K — _4
(d) CSAR (¢) RAM (ours)

(a) Ground truth (b) CBAM (c) RAMSR
Fig. 9. The visual comparisons of Different attention mechanisms imple-
mented on our DDAN-S. The assessments are made for 4x upscaling on the

15" frame from “ciry” video clips in Vid4 datasets.

TABLE VI

INVESTIGATION OF LR INPUT FRAMES FOR 4x VIDEO SR. THE UNIT OF
INPUT FRAMES AND TRAINING TIME ARE Nr AND S/BATCH.
THE TEXT INDICATE THE BEST PERFORMANCE

Models Nr  PSNR  Training time
3 31.11 0.364
DDAN-$ 5 31.16 0.728
3 31.17 0.514
DDAN | 5 3123 0.941

our DDAN reaches much deeper framework and produce better
SR results. This is because that the reduction of DCBs can
obviously decrease the weight parameters and deep RAM
can effectively model meaningful information to boost the
reconstruction performance.

Now we explore the effectiveness of the proposed DDAN
with the combinations of other different attention mod-
ules including CBAM [45], RAMSR [47], and CASR [48].
We re-implement these three attention mechanisms and con-
duct the same training process as our proposed RAM. The
basic architecture of all models is the same as DDAN-S.
Table V shows the quantitative results on Myanmar dataset
for 4x SR. We can see that the networks with RAMSR and
our RAM achieves the superior performance whereas CSAR
produces SR results with slightly lower PSNR. CBAM shows
the lowest PSNR than others. Then we illustrate the visual
comparisons on “city” in Vid4 dataset for 4x video SR.
In Fig. 9, it can be observed that our proposed RAM can
produce the best visual quality while CBAM and RAMSR
generate the HR frame with more blurs. Though CSAR
can reconstruct clear HR frame, there are some misleading
contents in local regions.

G. Influence of LR Input Frames

The proposed networks can take any number of consecutive
LR frames as input. In this subsection, we conduct the
experiments with two different values of Ny (3 and 5) on
our proposed models. In Table VI, we compare the training
time of each mini-batch and the validation PSNR performance
for 4x SR with different input frames 3 and 5. As shown
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TABLE VII

QUANTITATIVE COMPARISONS IN TERMS OF PSNR AND SSIM OF DIFFERENT SR MODELS ON Myanmar TESTING DATASET

WITH SCALE FACTOR 2, 3, AND 4. TEXT INDICATE THE BEST PERFORMANCE

Scale | Metric Single image SR methods
Bicubic A+ [3] SRCNN [5] VDSR [22] DRCN [23] LapSRN [25]
5 PSNR 34.59 37.19 37.79 38.56 38.43 38.01
SSIM 0.9458 0.9638 0.9640 0.9671 0.9670 0.9656
3 PSNR 31.59 33.48 33.88 34.64 3471 34.57
SSIM 0.8957 0.9191 0.9198 0.9257 0.9262 0.9252
4 PSNR 29.53 30.88 31.26 32.29 32.32 32.34
SSIM 0.8526 0.8777 0.8777 0.8873 0.8873 0.8878
Scale | Metric Video SR methods
Bayesian [6] VSRnet [7] MCResNet [33] RRCN [34] MMCNN [41] DDAN-S (ours) DDAN (ours)
5 PSNR 35.56 38.48 40.04 40.16 39.37 40.77 40.84
SSIM 0.9515 0.9679 0.9777 0.9794 0.9740 0.9771 0.9775
3 PSNR 32.20 34.42 35.18 35.21 35.42 36.76 36.85
SSIM 0.9203 0.9247 0.9387 0.9427 0.9393 0.9460 0.9468
4 PSNR 30.68 31.85 32.36 32.22 33.06 34.40 34.46
SSIM 0.8895 0.8834 0.8987 0.9001 0.9040 0.9134 0.9144
TABLE VIII
QUANTITATIVE COMPARISONS IN TERMS OF PSNR AND SSIM OF DIFFERENT SR MODELS ON Vid4 TESTING DATASET
WITH SCALE FACTOR 2, 3, AND 4. TEXT INDICATE THE BEST PERFORMANCE
Scale Metric Single image SR methods
Bicubic A+ [3] SRCNN [5] VDSR [22] DRCN [23] LapSRN [25]
2 PSNR 28.43 30.53 30.70 31.44 31.68 31.86
SSIM 0.8676 0.9154 0.9172 0.9257 0.9269 0.9290
3 PSNR 25.28 26.36 26.51 26.82 26.99 26.95
SSIM 0.7329 0.7904 0.7933 0.8089 0.8122 0.8158
4 PSNR 23.79 24.59 24.69 24.98 25.03 25.06
SSIM 0.6332 0.6889 0.6918 0.7119 0.7141 0.7170
Scale Metric Video SR methods
Bayesian [6] VSRnet [7] MCResNet [33] DRVSR [36] RRCN [34] MMCNN [41] DDRN-S (ours) DDAN (ours)
2 PSNR 29.69 31.30 32.28 32.50 32.58 33.50 33.51 33.65
SSIM 0.9055 0.9278 0.9433 0.9432 0.9451 0.9491 0.9492 0.9517
3 PSNR 25.82 26.79 27.54 _ 27.75 28.40 28.58 28.66
SSIM 0.8323 0.8098 0.8448 _ 0.8560 0.8722 0.8740 0.8752
4 PSNR 25.06 24.84 25.45 25.90 25.54 26.28 26.37 26.48
SSIM 0.7466 0.7049 0.7467 0.7678 0.7540 0.7844 0.7876 0.7892

in Table VI, with the increase of input frames, the models
can achieve higher PSNR performance but more training time.
This is because that the networks with 5 input frames can
efficiently model more temporal dependencies to learn more
useful information but higher processing time than 3 input
frames for multi-frame SR. Meanwhile, conducting the motion
compensation with more neighboring frames can involve larger
computational cost, which leads to more time consuming.
Therefore, we input 3 successive LR frames as input fed
into our proposed networks to achieve the best trade-off
between the SR performance and training time cost. In the
final, we have two best trained models DDAN-S and DDAN
compared with the state-of-the-arts.

H. Comparing With State-of-the-Arts

In this subsection, we conduct comprehensive compar-
isons of our proposed models with several single image SR
methods A+ [3], SRCNN [5], VDSR [22], DRCN [23],
LapSRN [25] and many state-of-the-art video SR meth-
ods including: Bayesian [6], VSRnet [7], Deep-DE [32],

ESPCN [24], MCResNet [33], DRVSR [36], RRCN [34], and
MMCNN [41] on 3 public video testing datasets.

1) Quantitative Comparisons: For video SR, since Myan-
mar testing dataset includes 6 scenes, each of which is
composed of only 4 frames. We use 3 consecutive LR frames
as input fed into our models to generate HR frames. Since that
DRVSR only provide 2x and 4x video SR models for the
fixed size 640 x 480 of HR frames, we do not test DRVSR on
Myanmar dataset. As illustrated in Table VII, our proposed
shallower model DDAN-S obtains higher PSNR and SSIM
values for all scale factors and the deeper vision DDAN
achieves the state-of-the-art. Particularly, both of our models
outperforms the RRCN which adopts the Myanmanr as the
training dataset by a considerable margin.

We further test our model on Vid4 and YUV2I] datasets
to prove the robustness of our proposed method. Since some
video SR methods employ 5 consecutive frames as input to
produce the center HR frame, thus, for evaluation, we skip the
first and last two frames as in [7], [33]. Note that the frames
from “city” in Vid4 dataset are with 704 x 576 resolution which
are not well suited for 3x SR. In our experiments, we cut
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TABLE IX

QUANTITATIVE COMPARISONS IN TERMS OF PSNR AND SSIM OF DIFFERENT SR MODELS ON YUV2] WITH
SCALE FACTOR 2, 3, AND 4. TEXT INDICATE THE BEST PERFORMANCE

Scale Metric Single image SR methods
Bicubic A+ [3] SRCNN [5] VDSR [22] DRCN [23] LapSRN [25]
5 PSNR 30.58 33.09 33.39 34.16 34.24 34.11
SSIM 0.8752 0.9168 0.9186 0.9266 0.9260 0.9263
3 PSNR 27.71 29.34 29.51 30.34 30.31 30.35
) SSIM 0.7727 0.8195 0.8211 0.8392 0.8378 0.8410
4 PSNR 26.29 27.50 27.66 28.39 28.27 28.45
SSIM 0.7063 0.7499 0.7529 0.7741 0.7714 0.7780
Scale Metric Video SR methods
Bayesian [6] VSRnet [7] MCResNet [33]  RRCN [34] MMCNN [41] DDAN-S (ours) DDAN (ours)
N PSNR 31.99 33.54 34.37 34.68 34.96 34.81 35.09
SSIM 0.8999 0.9222 0.9338 0.9378 0.9371 0.9337 0.9408
3 PSNR 28.62 29.58 30.11 30.32 30.82 30.92 30.98
SSIM 0.8271 0.8257 0.8452 0.8530 0.8567 0.8599 0.8608
4 PSNR 26.14 27.64 28.08 28.16 28.90 29.13 29.18
SSIM 0.7339 0.7543 0.7746 0.7785 0.7983 0.7989 0.7990
TABLE X

QUANTITATIVE COMPARISONS IN TERMS OF PSNR/SSIM OF DIFFERENT SR MODELS ON PUBLIC IMAGE SR DATASETS
WITH SCALE FACTOR 2, 3, AND 4. TEXT INDICATE THE BEST PERFORMANCE

[ Datasets [Scal  Bicubic | A+ [3] [ SRCNN [5] [ VDSR[22] [ DRCN [23] [ LapSRN [25] | DDAN-S (ours) | DDAN (ours) |
2 | 33.66/0.9299 | 36.54/0.9544 | 36.66/0.9542 | 37.53/0.9590 | 37.63/0.9588 | 37.52/0.9591 37.53/0.9589 37.58/0.9593
Set5 3 | 32.58/0.9088 | 30.39/0.8682 | 32.75/0.9090 | 33.66/0.9213 | 33.82/0.9226 | 33.81/0.9220 33.76/0.9216 33.84/0.9226
4 | 28.42/0.8104 | 30.28/0.8603 | 30.48/0.8628 | 31.35/0.8838 | 31.53/0.8854 | 31.54/0.8852 31.49/0.8848 31.54/0.8855
2 | 30.24/0.8688 | 32.28/0.9056 | 32.42/0.9063 | 33.03/0.9124 | 33.04/0.9118 | 32.99/0.9124 32.99/0.9119 33.05/0.9124
Setl4 3 | 27.55/0.7742 | 29.13/0.8188 | 29.28/0.8209 | 29.77/0.8314 | 29.76/0.8311 | 29.79/0.8325 29.71/0.8291 29.79/0.8329
4 | 26.00/0.7027 | 27.32/0.7491 | 27.49/0.7503 | 28.01/0.7674 | 28.02/0.7670 | 28.19/0.7720 28.04/0.7669 28.12/0.7721
2 | 29.56/0.8431 | 31.21/0.8863 | 31.36/0.8879 | 31.90/0.8960 | 31.85/0.8942 | 31.80/0.8952 31.76/0.8945 31.82/0.8959
BSDS100| 3 | 27.21/0.7385 | 28.29/0.7835 | 28.41/0.7863 | 28.82/0.7976 | 28.80/0.7963 | 28.82/0.7980 28.83/0.7980 28.88/0.7984
4 | 25.96/0.6675 | 26.82/0.7087 | 26.90/0.7101 | 27.29/0.7251 | 27.23/0.7233 | 27.32/0.7275 27.26/0.7237 27.34/0.7276
2 | 26.88/0.8403 | 29.20/0.8938 | 29.50/0.8946 | 30.76/0.9140 | 30.75/0.9133 | 30.41/0.9103 30.65/0.9138 30.72/0.9142
Urbanl00| 3 | 24.46/0.7349 | 26.03/0.7973 | 26.24/0.7989 | 27.14/0.8279 | 27.15/0.8276 | 27.07/0.8275 26.95/0.8261 27.15/0.8279
4 | 23.14/0.6577 | 24.32/0.7183 | 24.52/0.7221 | 25.18/0.7524 | 25.14/0.7510 | 25.21/0.7562 25.24/0.7540 25.33/0.7574
2 | 30.82/0.9332 | 35.37/0.9663 | 35.74/0.9661 | 37.22/0.9729 | 37.63/0.9723 | 37.27/0.9855 37.59/0.9726 37.65/0.9730
Mangal09| 3 | 26.95/0.8556 | 29.93/0.9089 | 30.48/0.9117 | 32.01/0.9340 | 32.31/0.9328 | 32.21/0.9318 32.33/0.9345 32.42/0.9348
4 | 24.89/0.7866 | 27.03/0.8439 | 27.58/0.8555 | 28.83/0.8809 | 28.98/0.8816 | 29.09/0.8845 28.93/0.8816 29.01/0.8827

off the frames to 702 x 576 for 3x magnification. Similarly,
with respect to the video sequences from YUV2], the frames
in each video sequence are cut off to 351 x 288 for 3x
magnification. Detailed quantitative results for the two datasets
are shown in Table VIII and Table IX, respectively. It is can
be seen that our DDAN-S achieves comparable performance
in terms of PSNR/SSIM on all datasets with scale factor 2,
3, 4. DDAN performs better than DDAN-S, since for complex
motion information, the network with deeper RAM can learn
more informative features than the shallower DDAN-S for
high-frequency details recovery.

To demonstrate the generalization of our proposed method,
we conduct experiments on public single image SR datasets
with several image SR methods. Since our proposed DDAN-S
and DDAN both take 3 adjacent frames as input for SR recon-
struction, for each image from image SR datasets, we repeat
the image twice and obtain three same images as a video
clip. As shown in Table X, though the proposed DDAN and
DDAN-S are not trained on image SR datasets, our models
still achieve competitive image SR results across all datasets
and scales.

2) Qualitative Comparisons: In addition to the quantitative
evaluation, we shows the visual comparisons of the different
SR methods for 4x SR in Fig. 10, and Fig. 11. Since that
the MMCNN only provide the original training code without
pretrained models, we retrain the best models introduced in
the paper to obtain the subjective results. The results of
ESPCN [24] are cited from the public results in VESPCN [35].
In Fig. 10, we can see that our models can produce clearer
lines, and shaper edges, while other methods are prone to pro-
duce lines with more blurs. Moreover, as sketched in Fig.11,
the parts including letters or numbers in the calendar are
magnified for more obvious comparison. It is observed that
after 4x magnification by Deep-DE, ESPCN, VDSR, and
LapSRN, the numbers can still be identified while the letters
are hard to be recognized. DRVSR has the ability to recover
part information of the letters, but still produces local details
with poor quality. Although the proposed DDAN-S produces
the HR frame with lower PSNR and SSIM values, the model
can reconstruct HR image with sharper and clearer characters.

3) Super-Resolving Real-World Video Sequences: To fur-
ther demonstrate the effectiveness of our propose method,
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(e) LapSRN ( 35.63/0.9351) (f) MMCNN (36.23 /0.9421)
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(g) DDAN-S (ours) (37.35/0.9476) (h) DDAN (ours) (37.44 / 0.9478)

Fig. 10.  Visual comparisons on the Myanmar testing dataset, where upscaling factor is 4.

-"I'E %0

28

(a) Ground truth (PSNR / SSIM)

(i) DRVSR (22.60 / 0.7370)

(j) MMCNN (22.84/0.7508)

Fig. 11. Visual comparisons on the

we capture two real-world LR video clips as shown in Fig. 12.
For the two examples, neither the ground-truth videos nor the
downsampling kernels are available. We extract 31 consecutive
frames from each videos and compare the 15 frame with
other video SR methods. In Fig. 12, we can observe that both
of our two models can produce the SR results with clearer
letters, numbers, and more photo-realistic details than the most
state-of-the art method MMCNN. Although Deep-DE can
produce clearer characters in some parts, the images contains
much more significant artifacts and blurs than our results.

4) Inference Time: As for inference time, for fair compar-
ison, we use the public codes of the compared algorithms

g mmm\wl
»‘“ ] AR SRR n

(© SRCNN (21.44/0.641)

(k) DDAN-S (ours) (22.75/0.7462) (1) DDAN (ours) (22.86 / 0.7532)

15" frame from calendar for 4x SR.

to evaluate the runtime on the machine with 3.4 GHz Intel
i7 CPU (128G RAM) and 1 NVIDIA Titan Xp GPU (12G
Memory). The average running time and PSNR values of
different methods on Vid4 dataset for 4x SR are shown
in Table XI. Besides, we compare the model complexity of all
SR methods in terms of parameter amount which are illustrated
in Table XI. As we can see, SRCNN and VSRnet have fewer
parameters but achieve worse SR performance with much
slower reconstruction speed compared with other methods.
Though DRVSR produces HR frames with the fastest speed,
this method still generates the SR results with lower PSNR
performance than MMCNN and our models. The proposed
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(a) Bicubic

(a) Bicubic

Fig. 12.

199 x 218 (bottom).

(b) Deep-DE

IHI

(¢) MMCNN

(¢) MMCNN

JAADE [N ALY

il

(d) DDAN-S (ours)
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(e) DDAN (ours)

Visual comparisons on real-world LR videos by 4x magnification. The original LR video clips are at the resolution of 116 x 83 (top) and

TABLE XI

COMPARISONS ON PSNR/SSIM VALUES, MODEL PARAMETERS, AND INFERENCE TIME ON Vid4 DATATSET

FOR 4x SR. TEXT INDICATE THE BEST PERFORMANCE

Methods | SRCNN [5] | VDSR [22] | LapSRN [25] | VSRnet [7] | DRVSR [36] | MMCNN [41] | DDAN-S (ours) | DDAN (ours)
PSNR 24.69 24.98 25.06 24.34 25.90 26.28 26.37 26.48
SSIM 0.6918 0.7119 0.7170 0.7049 0.7678 0.7844 0.7876 0.7892

Time (sec) 10.011 0.077 1.183 6.132 0.053 0.201 0.187 0216

Parameters 57K 665K 813K 78K 1.722M 10.582M 7.051M 10.290M

DDAN-S can achieve superior PSNR/SSIM values with faster
reconstruction speed than MMCNN. Moreover, our best model
DDAN can obtain the highest quantitative performance with
slightly higher time cost than DDAN-S.

VI. CONCLUSION

In this paper, we have proposed a deep dual attention
network for video SR. Our model investigates multi-level
optical flow representations between the adjacent frames and
center frame in a coarse-to-fine manner and infers the spatial
transform to model the motion compensation. We extract the
detail components of neighboring frames and employ dual
attention mechanisms to make full use of spatio-temporal
meaningful information for more accurate HR videos recon-
struction. We compare our models with other recent state-
of-the-art video SR approaches and the results demonstrate
that our proposed method obtains superior SR performance
on public benchmark datasets.
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